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Summary. The paper discusses statistical models for categorical data based on
directed acyclic graphs (DAGs) assuming that only effects associated with the arrows
of the graph exist. Graphical models based on DAGs are similar, but allow the
existence of effects not directly associated with any of the arrows. Graphical models
based on DAGs are marginal models and are best parameterized by using hierarchical
marginal log-linear parameters. Path models are defined here by assuming that all
hierarchical marginal log-linear parameters not associated by an arrow are zero,
providing a parameterization with straightforward interpretation. The paper gives
a brief review of log-linear, graphical and marginal models, presents a method for
the maximum likelihood estimation of path models and illustrates the use of path
models, with special emphasis on the interpretation of estimated parameter values,
to real data.

1 Introduction

This paper develops path models for categorical data and investigates their relation-
ship with models associated with directed acyclic graphs, using marginal log-linear
parameterizations of the distributions in the model. A path model is defined, in-
tuitively, as a model associated with a directed acyclic graph, in the sense that
the arrows of the graph represent direct effects between variables. A lack of an ar-
row between two variables means conditional independence between them, when
conditioning on the parents of either one. Section 2 of the paper gives a general
overview of models associated with directed acyclic graphs (DAGs) that possess
the required conditional independence properties. Section 3 reviews DAG models as
marginal models and Section 4 considers the implied marginal parameterization of
DAG models.

Finding the appropriate parameterization in which the models can be defined
and parameterized in an intuitive way is a central theme of the paper. In order to
fully utilize the models considered, one would need to have a parameterization in
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which the distributions in the model are parameterized by parameters measuring
the strengths of the effect (arrows) allowed in the model.

As it will be illustrated in Section 4, DAG models, for categorical data, also allow
effects that are not associated with any of the arrows in the model, thus further
developments are needed to define a model class with the required properties. It is
shown in Section 5 that in the marginal log-linear parameterization it is possible to
identify the effects associated with the arrows in the graph and by assuming that
the remaining parameters are zero, one obtains models that contain only effects
related to arrows. Section 6 discusses algorithmic aspects of estimating the models
and Section 7 presents an application.

2 Log-linear, graphical and DAG models

Let Vi, i = 1, . . . , q be categorical variables (classifications) with categories (or in-
dices) vi,1, . . . , vi,c(i), i = 1, . . . , q, respectively. The joint classification of N obser-
vations according to these form a frequency distribution on the Cartesian product
Ω =

⊗q

i=1
(vi,1, . . . , vi,c(i)) which is called a contingency table. Such data are fre-

quently observed in the social, behavioural or biological sciences. When analyzing
such data, a question of primary interest is how the variables are related to each
other. Simple structures are often formulated using a log-linear model [BFH75],
[Agr02].

A log-linear model is based on a class of subsets of the variables Γ , the so-called
generating class, and assumes that (in the strictly positive case)

log P (ω) =
∑
γ∈Γ

fγ(ωγ), (1)

for all ω ∈ Ω, where (.)γ is a marginalization operator in the sense that it selects
the indices from ω that belong to the variables in γ. The meaning of such a model
depends on the subsets of variables that appear in Γ . One intuitive interpretation is
that (1) means that there is no conditional order-(|G|−1) association (that is, asso-
ciation involving all |G| variables) within those groups of variables G ⊆ {V1, . . . , Vk}
that contain any of the maximal elements of Γ as a proper subset, when conditioned
on all other variables {V1, . . . , Vk} \G. Here, conditional association is measured by
the conditional odds ratio [Rud98]. The elements of Γ are, therefore called interac-
tions, because these groups of variables may be associated within each other. Another
possible interpretation of (1) is that it is equivalent to a number of restrictions be-
ing valid for the joint distribution. The restrictions are either one of two types. The
first type applies to subsets that are maximal with respect to the property that no
interaction contains more than one of the variables from the subset. The first type
of restriction is that the variables in any such subset, when conditioned on all other
variables, are jointly independent. The second type is that those groups of variables
of cardinality k that have the property that every subset of them of cardinality
k− 1 is an interaction, have no (k− 1)st order association, conditioned on all other
variables, when association is, again, measured by the odds ratio [Rud02].

Of particular interest are log-linear models based on generating classes with
the property that the maximal interactions are the cliques (i.e., maximal complete
subgraphs) of a graph G, where the nodes are the variables. Such models are called
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graphical models [Lau96] and they can be interpreted using conditional independen-
cies. In particular, in the characterization of log-linear models given in the previous
paragraph, there are no subsets with the second property, that is, the first type of
conditional independencies characterize the joint distribution. Another important
characterization is based on the so-called global Markov property: if two subsets of
variables A and C are separated by a subset B in the sense that all paths in G that
connect a variable in A with a variable in C goes through B, then the joint distri-
bution of the variables in A is conditionally independent from the joint conditional
distribution of variables in C, given the variables in B.

Graphical log-linear models are useful in modeling complex association struc-
tures among the variables, but many of the important substantive research problems
require the analysis of effects (i.e. directed associations) and these are, intuitively,
best modeled by using directed acyclic graphs (DAGs). A DAG is a simple directed
graph (an arrow always goes between two different nodes and there is at most one
arrow between any two nodes) without a directed loop, that is, without a path fol-
lowing the direction of the arrows starting in a node and ending in the same node. A
node is called a parent of another one if there is an arrow pointing from the former
one to the latter one. A node is called a descendant of another node if there is a
directed path leading from the latter one to the former one.

A DAG model is specified by a list of conditional independence restriction, re-
quiring that

Vi⊥⊥nd(Vi)|pa(Vi), (2)

for every i, where nd(Vi) is the set of nodes that are not descendants of Vi and
pa(Vi) is the set of parents of Vi.

3 DAG models as marginal models

Because for every variable, pa(Vi) ⊆ nd(Vi), the conditional independencies in
(2) that characterize a DAG model, apply to subsets of the variables, namely
{Vi}

⋃
nd(Vi). In this sense, DAG models belong to the class of marginal mod-

els introduced in [BR02], see also [RB04] for several possible applications of these
models.

Marginal models in [BR02] are defined by imposing linear or affine restrictions
on marginal log-linear parameters. Marginal log-linear parameters are ordinary log-
linear parameters computed from a marginal of the contingency table, rather than
from the entire table. Therefore, every marginal log-linear parameter is characterized
by two subsets of the variables: the marginal in which it is computed and the the
effect to which it applies. For example, in an ABCD table, the AB effect in the
ABC marginal, when all the variables are binary, is

λA
1

B
1

C
∗ =

1

2

∑
k

log

(
p11k+p22k+

p12k+p21k+

)1/4

, (3)

that is, the marginal log-linear parameter λA
i

B
j

C
∗ of the ABCD table is related to the

average conditional log odds ratio between A and B, conditioned on and averaged
over C, after marginalization over D. When the variables are not binary, the marginal
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log-linear parameter is matrix-valued. For example, the parameter of the AB effect
has (I − 1)(J − 1) linearly independent values, if A has I and B had J categories.
The notation λA

A
B
B

C
∗ refers to all these values, where the upper index is the marginal

and the lower index is the effect. The effect is always a subset of the marginal.
Marginal log-linear parameters provide the analyst with a flexible tool to pa-

rameterize the joint distribution of the variables on Ω. The exact rules and several
properties of these parameterizations are described in [BR02]. To obtain a param-
eterization, one needs to select certain marginals M1, M2, . . . , Mt of the table, in-
cluding the entire table and order them in a way that if Mi ⊆ Mj then Mi precedes
Mj . Then, every subset of the variables should appear as an effect, within the first
marginal where it is possible (i.e. within the first marginal that contains it). Such a
parameterization is called a hierarchical marginal log-linear parameterization.

4 Parameterization of DAG models

To obtain a hierarchical marginal log-linear parameterization of all the joint distri-
butions on Ω, in which path DAG models and path models may be conveniently
parameterized, consider first a so-called well-numbering of the variables. A well-
numbering is an order, in which i < j implies that Vi ∈ nd(Vj). If the variables are
well-numbered, then (2) is equivalent to

Vi⊥⊥
(
nd(Vi)

⋂
V<i

)
\ pa(Vi) | pa(Vi), (4)

where V<i is the set of variables preceding Vi, see [LDLL90].
The hierarchical marginal log-linear parameterization will be based on the series

of subsets V<i

⋃{Vi}, i = 1, . . . , q. All effects will appear within the marginal that
comes first from among those that contain it.

As a very simple example, consider three variables, A, B and C, with arrows
pointing from A to C and from B to C. A well-numbering is A, B, C and the relevant
marginals are A, AB, ABC. A hierarchical marginal log-linear parameterization
consists of the following parameters:

λA
∅ , λA

A, λA
∗

B
B , λA

A
B
B , λA

∗
B
∗

C
C , λA

A
B
∗

C
C , λA

∗
B
B

C
C , λA

A
B
B

C
C . (5)

When all the variables are binary, all the above parameters have essentially one
value, and one has eight parameters. The conditional independencies in (4), in the
present case, reduce to:

A⊥⊥B

and this is true if and only of

λA
A

B
B = 0.

Consequently, the remaining parameters in (5) parameterize all the distributions in
the DAG model.

Contrary to intuitive expectation, in addition to an overall effect λA
∅ , main effects

λA
A, λA

∗
B
B and λA

∗
B
∗

C
C , and effects related to the arrows λA

A
B
∗

C
C and λA

∗
B
B

C
C , there also

remains an additional non-zero effect λA
A

B
B

C
C . This last effect represents the joint effect

of A and B on C, in spite of the fact that A and B are marginally independent.
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Further, this effect cannot be associated with the arrows present in the DAG. For a
precise interpretation of how these parameters measure effects the size of the related
effect, see [BR03] and [RB04].

Path models are supposed to have only effects related to arrows and will be
defined here by assuming the parameters in the hierarchical marginal log-linear
parameters not associated with arrows are zero.

5 Path models

Consider a DAG with the variables forming Ω being the nodes and all strictly posi-
tive probability distributions on Ω parameterized by hierarchical marginal log-linear
paramneters based on the marginals V<i

⋃{Vi}, i = 1, . . . , q in a well-numbering
of the variables. Then, the assumption, inspired by the modified path models in
[Goo73], that

λM
E = 0 unless |E| ≤ 1 or E is an arrow in the DAG (6)

is the path model associated with the DAG. Models defined by the restriction (6)
are marginal log-linear models and, in addition to having a straightforward inter-
pretation, such models have a number of desirable statistical properties, as it was
demonstrated in [BR02].

First, the parameters not set to zero in (6) are variation independent from
each other, making individual interpretations of the parameters meaningful. Sec-
ond, maximum likelihood estimates under Poisson or multinomial sampling are sta-
tionary points of the likelihood with probability converging to one as the sample
size increases. Third, the maximum likelihood estimates have an asymptotic normal
distribution. Fourth, the likelihood ratio statistic has an asymptotic normal distri-
bution. Fifth, the maximum likelihood estimates of the parameters not set to zero
in (6) are equal to their observed values.

6 Maximum likelihood estimation

Several algorithms for fitting models with restrictions on the marginal distributions
of contingency tables have been proposed in the literature. Lagrange multiplier tech-
niques were discussed by [Hab85], [LA94] and [Ber97]. These methods are not guar-
anteed to converge, however, since they seek a saddle point (rather than a local
extreme) of the Lagrangian likelihood, which may be difficult to find. An alterna-
tive method, based on maximizing a reparameterized likelihood, was discussed by
[MN89] and [GM95]. This approach has the advantage over the aforementioned La-
grange multiplier methods that a maximum is sought, which tends to be easier to find
using gradient methods than a saddle point. However, because of the reparameteri-
zation, ‘iteration within iteration’ is needed, making the algorithm computationally
cumbersome.

An alternative approach which does not suffer from these drawbacks was intro-
duced by [BR05]. It is a quasi-Newton algorithm applied to a certain exact penalty
function which was first introduced by [Chr95]. This penalty function has the con-
strained maximum likelihood estimate as its unconstrained maximum. For marginal
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models, this method has the advantages, compared to the previously proposed meth-
ods, that (i) each iterative step can be performed fast and (ii) convergence is easy
to achieve since a maximum rather than a saddle point is sought. We shall now
describe this method.

The models in (6) can be described by constraints on the vector of cell proba-
bilities π of the following form:

h(π) = B log Aπ = 0

where B is a contrast matrix, i.e., has rows summing to zero (see [LA94, Ber97]).
With p the vector of observed proportions which are assumed to be strictly positive,
we seek to maximize the likelihood kernel

L(π) = p′ log(π)− 1′π ,

subject to the model constraint h(π) = 0. We denote this maximum likelihood
estimate (MLE) as π̂. As shown by [La96] the MLE of the cell probability vector
π is obtained by determining the saddle point of the kernel of the Lagrangian log
likelihood function

L(π, λ) = p′ log(π)− 1′π − λ′h(π) ,

where λ is a vector of unknown Lagrange multipliers. The Hessian of the constraint
function h(π) is

H(π) =
∂h(π)′

∂ log π
= DπA′D−1

AπB′

where Dπ is the diagonal matrix with π on the main diagonal. Now differentiating
L(π, λ) with respect to π, equating to zero, and solving for λ yields

λ(π) =
(
H(π)′H(π)

)−1
H(π)′(p− π),

see [BR05]. We may now consider the function L(π, λ(π)), which depends only on the
unknown probability vector π, not on the Lagrange multipliers. However, L(π, λ(π))
does not in general have a maximum at π̂. Next, we define a function which does
have this property.

With

V (π) =
(
H(π)′H(π)

)−1

and G(π) the matrix with (i, j)th coordinate

gij = −δijπij −
∑

k

λk(π)
dhk(π)

d log πi d log πj

let

W (π) = V (π)H(π)′G(π)H(π)V (π)

(see [BR05] for a closed form matrix expression for G(π)). We can now define the
exact penalty function

P (π) = L(π, λ(π)) +
1

2
h(π)′W (π)h(π) +

1

2
h(π)′V (π)h(π).
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The function P (π) is called ‘exact’ since it does not depend on the Lagrange multi-
plier vector λ, and ‘penalty function’ because of the third term which penalizes for
deviations of h(π) from zero. The important property of P (π) is that it has π̂ as
an unconstrained maximum [Chr95, BR05]. There are several possibilities for max-
imizing P (π). Direct application of Newton’s method involves up to fourth order
derivatives of the constraint function and is therefore impractical. Newton’s method
using so-called automatic differentiation was proposed by [Chr95]. Alternatively,
[BR05] proposed a quasi-Newton method based on first and second derivatives with
respect to π of the function

P (π; π0) = L(π, λ(π)) +
1

2
h(π)′W (π0)h(π) +

1

2
h(π)′V (π0)h(π),

where the occurrences of λ(π) and h(π) and the Hessian are replaced by their MLEs,
i.e., by 0. This yields for the gradient of P

∇P (π; π0) = p− π −H(π)λ(π)−G(π)H(π)V (π)h(π) +

H(π)W (π0)h(π) + H(π)V (π0)h(π)

and for its Hessian ∇2P (π; π0) = Dπ. The algorithm is as follows:

log π(0) = log p

log π(k+1) = log π(k) − t(k)
[
∇2P

(
π(k); π(k)

)]−1∇P
(
π(k); π(k)

)

where k = 0, 1, . . . and 0 < t(k) ≤ 1 is a step size which must be chosen small enough
to ensure that

P (π(k+1); π(k)) > P (π(k); π(k))

The algorithm appears to have good numerical properties for a wide variety of mod-
els. It has been applied to problems with many thousands of cells, the main limita-
tion apparently being the amount of computer memory available. Further numerical
experience is given in [BR05].

7 An example

The data in Table 1 are from [MN89], originally published in [Sch70] and were also
analyzed by [Fie70] and by [BFH75]. The data concern the daytime habits of two
species of lizard, grahami and opalinus and were collected by observing occupied
sites or perches and recording species involved, time of day, height and diameter of
perch and whether the site was sunny or shady.

Suppose we wish to identify how the factors that possibly determine whether
a perch is occupied by a grahami or an opalinus lizard are related to each other.
A plausible model for the determinants is shown in Figure 1 (Model 1), which is a
DAG model.

The model assumptions are as follows: (1) the physical characteristics of an
occupied perch (height and diameter) are independent from the time of observation,
(2) the diameter of an occupied perch does not affect directly whether the perch is
sunny or shady, that is, these variables are conditionally independent given the other
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Table 1. Site preferences of two species of lizard. H: perch height, D: perch diam-
eter, S: sunny/shady, T : time of day, S: G - grahami, O - opalinus

T
Perch Early Mid-day Late

S D (in) H (ft) G O G O G O

Sun ≤ 2 < 5 20 2 8 1 4 4
≥ 5 13 0 8 0 12 0

> 2 < 5 8 3 4 1 5 3
≥ 5 6 0 0 0 1 1

Shade ≤ 2 < 5 34 11 69 20 18 10
≥ 5 31 5 55 4 13 3

> 2 < 5 17 15 60 32 8 8
≥ 5 12 1 21 5 4 4

H

T

D

S L

Fig. 1. Model 1, DAG Model

explanatory variables. Formally these assumptions can be defined by the following
conditional independencies:

HD⊥⊥T and D⊥⊥S | TH. (7)

A well-numbering is H, D, T , S, L. The marginals involved in the parameteri-
zation are H, HD, HDT , HDTS, HDTSL. The corresponding zero effects in the
DAG model are

λH
H

D
∗

T
T , λH

∗
D
D

T
T , λH

H
D
D

T
T , λH

∗
D
D

T
∗

S
S , λH

H
D
D

T
∗

S
S , λH

∗
D
D

T
T

S
S , λH

H
D
D

T
T

S
S ,

and the parameters of the distributions in the model are

λH
∅ , λH

H , λH
∗

D
D, λH

H
D
D, λH

∗
D
∗

T
T , λH

∗
D
∗

T
∗

S
S , λH

H
D
∗

T
∗

S
S ,



Parameterization and estimation of path models for categorical data 9

λH
∗

D
T

T
∗

S
S , λH

H
D
T

T
∗

S
S , λH

∗
D
∗

T
∗

SL
∗L , λH

H
D
∗

T
∗

SL
∗L , λH

∗
D
D

T
∗

SL
∗L , λH

∗
D
∗

T
T

SL
∗L ,

λH
∗

D
∗

T
∗

SL
SL, λH

H
D
D

T
∗

SL
∗L , λH

H
D
∗

T
T

SL
∗L , λH

H
D
∗

T
∗

SL
SL, λH

∗
D
D

T
T

SL
∗L , λH

∗
D
D

T
∗

SL
SL,

λH
∗

D
∗

T
T

SL
SL, λH

H
D
D

T
T

SL
∗L , λH

H
D
D

T
∗

SL
SL, λH

H
D
∗

T
T

SL
SL, λH

∗
D
D

T
T

SL
SL, λH

H
D
D

T
T

SL
SL,

The second model we consider is a path model derived from Model 1 by elimi-
nating the following parameters according to (6):

λH
H

D
T

T
∗

S
S , λH

H
D
D

T
∗

SL
∗L , λH

H
D
∗

T
T

SL
∗L , λH

H
D
∗

T
∗

SL
SL, λH

∗
D
D

T
T

SL
∗L , λH

∗
D
∗

T
T

SL
SL,

λH
H

D
D

T
T

SL
∗L , λH

H
D
D

T
∗

SL
SL, λH

H
D
∗

T
T

SL
SL, λH

∗
D
D

T
T

SL
SL, λH

H
D
D

T
T

SL
SL,

For example, setting the λH
H

D
T

T
∗

S
S , parameter to zero can be interpreted, if S is

considered a response to H and T , as assuming that these have separate effects only.
Or, setting the λH

H
D
D

T
∗

SL
∗L , parameter to zero can be interpreted as assuming that H

and D have only separate effects on L. Notice that there is an effect from H to
D and there is no arrow between H and T , still, in a path model neither pair is
assumed to have a joint effect on its respective response.

The goodness-of-fit of the models is characterized here by the likelihood-ratio
statistics LR, although it is well-known that asymptotic p values may be unreli-
able when analyzing sparse contingency tables like the one we have here (see, e.g.
[Rud86]), however LR is useful to compare nested models. Table 2 displays goodness-
of-fit tests for the two models (note that one half was added to the empty cells before
model fitting)

Table 2. Goodness-of-Fit Tests for Models for Table 1

Model df LR p

Model 1 12 13.3 .35
Model 2 32 24.8 .81
Model 2 / Model 1 20 11.5 .93

The increase in LR, when moving to the more restrictive path model from the
DAG model is far from being significant. Thus, removing all effects from Model 1,
except for those consisting of a child and one of its parents, seems sensible. Further,
the observed explanatory variables appear to give a reasonably good prediction of
the response variable.

One may want to go further, looking for an even simpler model. Backward elim-
ination can be used, sequentially eliminating terms from the parameters defining
Model 2. In the first step, the smallest increase in LR, compared to Model 2, re-
sults from eliminating the λH

H
D
∗

T
∗

S
S parameter. After removing it, each additional

parameter elimination causes significant increase in LR. Figure 2 presents parame-
ter estimates for this final path model. Only non-redundant parameters are displayed
and, naturally, no parameter estimates for the HS effect that is removed. For ev-
ery hierarchical marginal log-linear parameter displayed, there is an additional last
(redundant) value, the sum of which with the given value(s) is zero.

For each effect, the strength and direction of the dependencies can be read off
from the parameter estimates. As it can be seen, small-diameter occupied sites are
more likely to be in high positions. Occupied sites observed at mid-day are more
likely to be shady than sites observed at another time.
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A perch in a high position is more likely to be occupied by a grahami lizard, as
opposed to an opalinus lizard than a perch in a low position. The same can be said
about small versus large perches and about sunny versus shady perches and about
perches observed early or at mid-day, versus late. These effects may be separated
and their strengths are measured here by the the appropriate value of the relevant
marginal log-linear parameter (the value given is one quarter of the logarithm of the
conditional odds ratio for binary explanatory variables, see (3)).

Regarding the latter finding: previous analyses (see [MN89]) using GLM arrived
at the same conclusion. One main advantage of the approach presented here is the
possibility of tracing direct and indirect paths, e.g. T has a direct effect on Lizard
(at mid-day it is more likely to observe a grahami than an opalinus) and an indirect
effect through S as well: a lizard is more likely to occupy a shady site at mid-day,
than at another time, and an occupied shady perch is more likely to be occupied by
an opalinus.

H

T

D

S L

-.25

-.19

.20

.16
.25
-.53

.08

.19

Fig. 2. Parameter Estimates, Path Model
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